On a class of nonlinear differential hyperbolic systems with non-local boundary conditions
نویسندگان
چکیده
منابع مشابه
On a class of Kirchhoff type systems with nonlinear boundary condition
A class of Kirchhoff type systems with nonlinear boundary conditions considered in this paper. By using the method of Nehari manifold, it is proved that the system possesses two nontrivial nonnegative solutions if the parameters are small enough.
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملContinuous Adjoint-Based Optimization of Hyperbolic Equations with Nonlinear Differential Equation Constraints on Periodic Boundary Conditions
This paper presents a continuous adjoint-based optimization theory for a general closed-loop transport hyperbolic model controlled via a periodic boundary control to minimize a multi-objective cost functional. The periodic boundary control is subject to a nonlinear differential equation constraint, thus resulting in a coupling between the hyperbolic equation and the ordinary differential equati...
متن کاملFunctional Differential Equations with Non-local Boundary Conditions
In this work, we study an abstract boundary-value problem generated by an evolution equation and a non-local boundary condition. We prove the existence and uniqueness of the strong generalized solution and its continuity to respect to the parameters. The proofs are obtained via a priori estimates in non classical functional spaces and on the density of the range of the operator generated by the...
متن کاملDissipative Boundary Conditions for One-Dimensional Nonlinear Hyperbolic Systems
We give a new sufficient condition on the boundary conditions for the exponential stability of one-dimensional nonlinear hyperbolic systems on a bounded interval. Our proof relies on the construction of an explicit strict Lyapunov function. We compare our sufficient condition with other known sufficient conditions for nonlinear and linear one-dimensional hyperbolic systems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1982
ISSN: 0022-0396
DOI: 10.1016/0022-0396(82)90082-1